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1 Introduction

In this article we provide a new asymmetric encryption design based on the
difficulty of solving a system of equations where the variables forming
the system outnumber the equations. Further discussion on this problem
will be provided in the following sections.

2 A new security notion for asymmetric encryption

The following 2 sub-sections provide definitions and discussion on the the so-
called underlying security primitive which the our asymmetric scheme relies
on.

2.1 Solving a system of m equations with n variables where n > m

Definition 1. To determine the value of variables (which are private) utilized
initially to form a system of equations where the number of variables are more
than the equations.

2.2 Linear diophantine equations with infinitely many solutions

Before we discuss this subsection we will first observe a remark by Herrmann
and May [1]. It discusses the ability to retrieve variables from a given linear
Diophantine equation. But before that we will put forward a famous theo-
rem of Minkowski relates the length of the shortest vector in a lattice to the
determinant[1]:
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Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

||v|| ≤
√
ωdet(L)

1
ω

We now put forward the remark.

Remark 1. There is a method for finding small roots of linear modular equations
a1x1 + a2x2 + ... + anxn ≡ 0 (mod N) with known modulus N . It is further
assumed that gcd(ai, N) = 1. Let Xi be upper bound on |yi|. The approach to
solve the linear modular equation requires to solve a shortest vector problem in a
certain lattice. We assume that there is only one linear independent vector that
fulfills the Minkowski bound (Theorem 1) for the shortest vector. Herrmann and
May showed that under this heuristic assumption that the shortest vector yields
the unique solution (y1, ..., yn) whenever

n∏
i=1

Xi ≤ N.

If in turn we have
n∏
i=1

Xi > N1+ε.

then the linear equation usually has N ε many solutions, which is exponential in
the bit-size of N . So there is no hope to find efficient algorithms that in general
improve on this bound, since one cannot even output all roots in polynomial
time.

We now put forward a corollary.

Corollary 1. A linear diophantine equation f(x1, x2, ..., xn) = a1x1 + a2x2 +
...+ anxn = N , with

n∏
i=1

xi > N1+ε.

is able to ensure secrecy of the sequence x = {xi}.

Remark 2. In fact if one were to try to solve the linear diophantine equation

N = a1x1 +a2x2 + ...+anxn, where
n∏
i=1

Xi > N1+ε, any method will first output

a short vector x = {xi} as the initial solution. Then there will be infinitely many
values from this initial condition that is able to recontruct N .

3 A new asymmetric primitive

In this section we provide the reader with a working cryptographic primitive
that is based upon the the mentioned “hard” problem as above.
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• Key Generation by Along

INPUT: The size n of the parameters and a pair of public prime integer
values (g1, g2) ≈ 2n.

OUTPUT: A public key tuple (n, s, e1, e2, e3, g1, g2) and private keys (d, v, a1).

1. Generate random n-bit secret prime integers (a1, a2, a3, a4, a5).
2. Compute secret parameter u = a2 + a3 + a4, v = a2 + a4 + a5, w = g1(a2 +
a3 + a4) + g2(a2 + a4 + a5) (mod a1), x = g1(a2 + a4 + a5) + g2(a2 + a3 + a4)
(mod a1).

3. Compute public key-1: e1 = u
v (mod a1).

4. Compute public key-2: e2 = w
v (mod a1).

5. Compute public key-3: e3 = x
v (mod a1).

6. Compute private d = s−1 (mod a1 − 1).
7. Return the public key pair (n, s, e1, e2, e3, g1, g2) and private keys (d, v, a1).

• Encryption by Busu

INPUT: The message M tuple (b0, b1, b2) where b0 ≈ 2n−1 and b1, b2 ≈ 2sn,
and Along’s public key set (n, s, e1, e2, e3, g1, g2).

OUTPUT: A ciphertext pair (C1, C2).

1. Compute secret parameter B1 = g1b1 + g2b2, B2 = g2b1 + g1b2.
2. Compute ephemeral parameter b3 = bs0 − b2.
3. Compute the first ciphertext C1 = B1e1 − b1e2 + b3e3 + B2. Equivalently
C1 = b1(g1e1 − e2 + g2) + b2(g2e1 + g1) + b3e3.

4. Compute the second ciphertext C2 = b1 + b2 + b3.
5. Send the ciphertext pair C = (C1, C2).

• Decryption by Along

INPUT: The ciphertext pair C = (C1, C2) and private key tuple (d, v, a4).
OUTPUT: The message tuple M = (b0, b1, b2).

1. Compute b0 =
(
C1v
x

)d
(mod a1).

2. Compute b1 = C2 − bs0.
3. Solve the simultaneous equations C1−b1(g1e1−e2+g2) = b2(g2e1+g1)+b3e3

and C2 − b1 = b2 + b3 to obtain b2.
4. Return the message tuple M = (b0, b1, b2).
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Proposition 1. The decryption process is correct.

Proof.

z ≡ C1v( 1
x ) ≡ [B1u− b1w + b3x+B2v](

1

x
)

≡ [(b1g1 + b2g2)(a2 + a3 + a4) + (b1g2 + b2g1)(a2 + a4 + a5)− b1w + b3x](
1

x
)

≡ [b1w + b2x− b1w + b3x)](
1

x
)

≡ [b2 + b3]

≡ bs0 (mod a1) (1)

Then,

zd ≡ b0 (mod a1) (2)

We obtain the exact b0 since b0 < a1, which ensures that no modular reduction
has occurred. Next, to obtain (b1, b2) is trivial.

In the next section we will point out locations where the fundamental source of
security situated.

4 The fundamental source of security

We will dissect the mathematical structures introduced in the above so-called
“cryptosystem”. We will begin at looking at Along’s parameters first.

4.1 Security of the ciphertext

– Observe the ciphertext given by C1 = b1(g1e1−e2+g2)+b2(g2e1+g1)+b3e3.
– We have b1, b2, b3 ≈ 2sn while g1e1 − e2 + g2, g2e1 + g1 ≈ 22n and e3 ≈ 2n.
– We have C1 ≈ 2(s+2)n while b1b2b3 ≈ 23sn. Thus, b1b2b3 > C1.
– As for C2 = b1 + b2 + b3 its clear that b1b2b3 > C2.
– To solve the simultaneous equations of C1, C2 it is a system of 2 equations

with 3 variables.

4.2 Security of the public key

Observe the following public key equations:

e1v = u+ a1t1 (3)

e2v = w + a1t2 (4)

e3v = x+ a1t3 (5)

This is a system of 3 equations with the following unknown tuple (v, u, w, x, a1, t1, t2, t3).
Now lets assume the following strategy:
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– Set a1 = a′1, t1 = t′1, t2 = t′2.
– Multiply equation (7) with t′2 and (8) with t′1.
– Obtain v(e1t

′
2 − e2t′1) = ut′2 − wt′1. Let δ = ut′2 − wt′1. Proceeding to solve

v(e1t
′
2 − e2t

′
1) = δ (diophantine equation in 2 variables), let v0 = K and

δ = e1t
′
2 − e2t′1.

– Then proceed to to solve for ut′2−wt′1 = Kδ, which gives u = u0 = Ke1 and
w = w0 = Ke2.

– Finally, x0 ≡ Ke3 (mod a′1).
– We will now analyze the result when an adversary proceeds to decrypt using

the parameters that he obtained as mentioned above as outlined in Propo-
sition 2.

z ≡ C1v0 ≡ [B1u0 − b1w0v0 + b3x0v0 +B2v0]

≡ [B1u0 − b1e2v0 + b3e3v0 +B2v0]

≡ [(b1g1 + b2g2)(a′2 + a′3 + a′4) + (b1g2 + b2g1)(K)− b1e2(K) + b3e3(K)]

≡ [(b1g1 + b2g2)(a′2 + a′3 + a′4) +K(b1g2 + b2g1)−Kb1e2 +Kb3e3]

≡ [b1(g1u0 −Ke2 +Kg2) + b2(g2u0 +Kg1) +Kb3e3)]

≡ [b1(g1(a′2 + a′3 + a′4)−Ke2 +Kg2) + b2(g2(a′2 + a′3 + a′4) +Kg1) +Kb3e3] (mod a′1)

(6)

Remark 3. One can see that if via the candidate parameters (K, a′1, a
′
2, a
′
3, a
′
4)

equation (6) has both the following occurring then the adversary is able to
decrypt passively. That is if the adversary obtains simultaneously:

g1(a′2 + a′3 + a′4)−Ke2 +Kg2 ≡ 0 (mod a′1) (7)

and

g2(a′2 + a′3 + a′4) +Kg1 ≡ Ke3 (mod a′1) (8)

That is, the adversary is able to reconstruct b2 + b3 ≡ bs0 (mod a′1).

– The adversary can also view the above public key equations (3),(4) and (5)
as:

(e1 − 1)a2 − a3 + (e1 − 1)a4 + e1a5 ≡ 0 (mod a1)

(e2 − g1 + g2)a2 − g1a3 + (e2 − g1 + g2)a4 + (e2 + g2)a5 ≡ 0 (mod a1)

(e3 − g1 + g2)a2 + g2a3 + (e3 − g1 + g2)a4 + (e3 − g1)a5 ≡ 0 (mod a1)

Let

G =

 e1 − 1 −1 e1 − 1
e2 − g1 + g2 −g1 e2 − g1 + g2
e3 − g1 + g2 g2 e3 − g1 + g2

 .
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For benefit of adversary assume det(G) 6= 0. Next, the adversary chooses a′5 and
a′1 where gcd(a′1, det(G)) = 1. This results in the following:

G

a2
a3
a4

 = −a′5

 e1
e2 + g2
e3 − g1

 (mod a′1).

The adversary would then obtain the tuple (a′2, a
′
3, a
′
4) which would be used

together with a′1 and a′5 to construct the tuple (u0, v0, w0, x0). This would lead
back to equation (7) and (8) in Remark 3.

Remark 4. From equations (7) and (8) we can have the following:

(g1 − g2)u0 +K(g2 − e2 − g1 + e3) ≡ 0 (mod a′1) (9)

which can also be viewed as

(g1 − g2)u0 + (g2 − e2 − g1 + e3)K − a′1j = 0 (10)

for some j ∈ Z.

In other words, the adversary has to search for integers (uo,K, a
′
1, j) such that

equation (10) holds together simultaneously with following equations (remember:
K = v0):

e1v0 ≡ u0 (mod a′1) (11)

e2v0 ≡ w0 (mod a′1) (12)

e3v0 ≡ x0 (mod a′1) (13)

This is analogous to the subset sum problem?

Remark 5. If the parameter a1 is given as a public parameter, will the above
situation (experienced by the adversary) remain?

5 Collision type attacks

We dedicate this section to discuss the possibility of designing a collision type
attack on our new scheme.

6 Achieving IND-CCA2

It is obvious that the new scheme achieves IND-CPA. But how about IND-
CCA2?
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7 Conclusion

This paper presents a new cryptosystem that has advantages in the following
areas against known public key cryptosystems:

1. It has a complexity order of O(n2) during encryption and O(n3) during
decryption.

2. Mathematically, an adversary does not have any advantage to attack the
published public key (i.e. because of the number of variables is much more
than the equations) or the ciphertext.

3. Does the new scheme produce “cylic-type” features that would allow a col-
lision type attack to be designed?

4. If a collision type attack cannot be designed, how do we propose to evaluate
the scheme in order to suggest a minimum key length?
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