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Abstract: In this work, we introduce a new, efficient and practical scheme 

based on the Rabin cryptosystem without using the Jacobi symbol, message 

redundancy technique or the needs of extra bits in order to specify the correct 

plaintext. Our system involves only a single prime number as the decryption key 

and does only one modular exponentiation. Consequently, this will practically 

reduce the computational efforts during decryption process. We demonstrate 

that the decryption is unique and proven to be equivalent to factoring. The 

scheme is performs better when compared to a number of Rabin cryptosystem 

variants. 
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1. Introduction 

In principle, the Rabin scheme is really efficient, because only a square 

is required for encryption; furthermore, it is shown to be as hard as factoring 

problem. Alas, the Rabin cryptosystem suffer from two major drawbacks; the 

foremost one is because the Rabin’s decryption produces four possible 

candidates, thus introduces ambiguity or unclearness to decide the correct 

message out of four possible values. Another drawback is from the fact that its 

equivalence relation to factorization. On one side, the Rabin cryptosystem gives 

confidence as the security of breaking such system is proven to be as difficult 

as factoring compare to RSA. On the other side, the computational equivalence 

relation of the Rabin cryptosystem and the integer factorization problem makes 

the scheme vulnerable to an adversary that can launch a stronger attack, 

namely the chosen ciphertext attack. In summation, any scheme that inherits 

the properties of a security reduction that is equivalent to factoring is not very 
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practicable as cipher systems [26]. These two disadvantages of the Rabin 

encryption scheme prevented it from widespread practical use. 

1.1 Related work  

In spite of the situation of four-to-one mapping of Rabin’s decryption, and the 

vulnerability to chosen ciphertext attacks, several attempts were made to solve 

this problem adequately. It is very interesting to witness continuous efforts in 

searching for a practical and optimal Rabin cryptosystem by numerous 

scholars. We put forward the summary for Rabin’s variants as follows. 

Williams [11] proposed an implementation of the Rabin cryptosystem 

using the Jacobi symbol. Subsequently, the utility of the Jacobi symbol as extra 

information to define the correct square root accompanied with Rabin 

cryptosystem was also proposed by [13]. Next is the extra bits methodology. It 

is a very attractive approach to solve the uniqueness problem in the Rabin 

decryption procedure. It appeared in current literature such as extra bits 

introduced by [18] and also utilized together with the Dedikind Sums Theorem 

in [7]. 

In [3] a redundancy to the message was proposed, which intends to 

append the plaintext with the repeating of least significant bits of the message 

with a pre-defined length. In [19, 29] and [15] the authors proposed a Rabin-

type cryptosystem with alternative modulus choice of       . The 

combination of Rabin cryptosystem with a specific padding method was 

proposed by [14], [19] by using Optimal Asymmetric Encryption Padding 

(OAEP) [17] and Rabin-SAEP [5]. Note that the message output by decryption 

process for this padding scheme is unique but the decryption may fail with 

small probability. 

1.2 Motivation and Contributions 

It is of practical considerations that motivated researchers to turn the 

Rabin scheme to be useful and practical as RSA since it possess practical 

qualities. In general, all the existing variation seems to apply some additional 

features, for instance; implementing some padding, adding redundancy in the 

message or manipulate some mathematical pattern, with the target to get a 

unique decryption result but at the same time losing its computational 

advantage over RSA. In order to engage this problem and to overcome all the 

mentioned shortcomings, further analytical work is needed to refine those 

existing work.  



In this work, we revisit Rabin cryptosystem and propose a new efficient 

and practical scheme which has the following characteristics; i) a cryptosystem 

that can be proven equivalent to factoring, ii) preserve the performance of 

Rabin encryption while producing a unique message after decryption, iii) 

improve decryption efficiency by using only one modular exponentiation as 

oppose to typical Rabin-based decryption that use two one modular 

exponentiation, iv) the decryption key using only a single prime number 

instead of two, and finally v) resilient to a side channel attack namely the 

Novak’s attack by avoiding the need for CRT computation. 

2. Preliminaries 

2.1 Public Key Encryption. 

2.2 Rabin Cryptosystem 

2.3 Drawbacks of Previous Strategies 

In this section, we initiate a list that describes the drawback of the previous 

strategies to overcome the Rabin weaknesses. Hence we established conditions 

that need to be avoided on any attempt to refine the Rabin scheme. 

2.3.1 The Use of Jacobi Symbol. 

See [5, 25]. 

2.3.2 Message Redundancy and Padding Mechanism 

 

2.3.3 The Use of CRT  

(see [23]) 

2.4 Methodology 

Now, we outlined the methodology to overcome the drawbacks of the Rabin 

cryptosystem and all its variants. Firstly, we put the condition on the modulus 

of type       to be used. We then impose restriction on the plaintext   and 

ciphertext    space as       and        , respectively. From the plaintext-

ciphertext expansion such restriction leads to a system that is not a length-

preserving for the message. 



Let     be the plaintext and ciphertext and  ( ) be the function of   

taking   as its input. Say, for instance, in RSA the plaintext and ciphertext 

spaces are the same, thus we denote the mapping as  ( )        . Note 

that this situation could be an advantage for the RSA scheme since RSA 

encryption has no message expansion. This is not, however true for all 

cryptosystems. For example, the plaintext-ciphertext mapping for Okamoto-

Uchiyama Cryptosystem [28] is  ( )         , Pailier cryptosystem [22] and 

the scheme by [8] is   ( )       (  ) , Rabin-SAEP [5] mapping 

is  ( )     
 
     and Schmidt-Samoa cryptosystem [15] is  ( )          . 

The maximum space size is determined by the plaintext space. One way 

to do it would be to tell the user a maximum number of bits for the plaintext 

messages. If we view the message as merely the keys for a symmetric 

encryption scheme, meaning that the message is indeed a short message, then 

this is fine as many others schemes also implement this approach. Thus, we 

argue that the restriction of message space would be a hindrance is not an 

issue. 

3 Our Proposed Scheme: Rabin-  Cryptosystem 

In this section, we provide the details of the proposed cryptosystem namely 

Rabin-  Cryptosystem. Rabin-  is named after the Rabin cryptosystem with the 

additional   symbolizing that the proposed scheme only uses a single prime   

as the decryption key. The proposed cryptosystem defined as follows. 

Algorithm 3.1: Key Generation 

INPUT: The size   of the security parameter. 

OUTPUT: The public key   and the private key  .  

1. Generate random and distinct  -bit primes      such that      

  (     ) where               . 

2. Compute       .  

3. Return the public key   and the private key  .  

Algorithm 3.2: Encryption 

INPUT: The plaintext   and the public key  . 

OUTPUT: A ciphertext  . 

1. Choose plaintext         such that    (   )    

2. Compute      (     ). 

3. Return the ciphertext  . 



Remark 3.1 We observe that the message space is restricted to the 

range        . It shows that the message         
  

 
   . 

Algorithm 3.3: Decryption 

INPUT: A ciphertext   and the private key  .  

OUTPUT: The plaintext  . 

1. Compute     (     ) 

2. Compute     
   

  (     ). 

3. Compute    
    

 

 
 . 

4. Compute   
 

   
 (     ). 

5. Compute         . 

6. If    
  

 
, then return     .  

7. Else return        . 

Remark 3.2 The decryption algorithm needs only a single prime number as its 

key and it operates with single modular exponentiation operation. This 

situation would give impact on the overall computational advantage of the 

proposed scheme against other Rabin variants. 

3.1 Proof of Correctness 

The decryption output by Algorithm 3.3 is correct and produces the unique  . 

We shall break down the proof of correctness to several lemmas. We proceed 

with the proof of correctness as follows. 

Suppose       (       )  then          (       ). Note that, 

if      is divisible by     then it is certainly divisible by   . From Remark 3.1 

the message          
  

 
   . Thus, it is sufficient to solve for    

  (      ). 

Lemma 3.3 Let      (      )  then exist two distinct square 

roots;    (      ).  

Proof: Suppose       such that   
    

   (      ). Then 

  
    

  (     )(     )   (     
 )   (1) 

Note that    (     )(     ) , thus consider   (     )(     )  as 



well. If   (     )  and   (     ) , then   would divide (     )  

(     )      and (     )  (     )     . Since     (     )  is 

odd prime, then     so   would divide both    and    . Consider   
  

 (      )  thus   
        for some integer   . If      then     

  

therefore     . Observe that    (   )    therefore     . Hence      . The 

same goes for       

Now, consider in the case if   (     ) or   (     ) but not both. 

Since    (     )(     ), therefore either     (     ) or    (     ). 

This concludes       (     
 ) and        (     

 ).  

Lemma 3.4 Suppose    is a solution to      (     ). Let    be a solution 

to        (     )  such that    
    

 

 
. Then         is a solution 

to      (      ) . Furthermore    (      )  is another solution. Let     

  (      ) and       (     
 ) then        

 . 

Proof: Suppose we are given the ciphertext   as described in the encryption 

process (i.e. 3.4.2), and need to solve for its square root modulo       . 

Let     (     ), and since    , then we have         (     ). From 

here, since      thus it is sufficient just solving    (     ). 

We begin by solving    (     ). Let    is a solution to    (     ) 

such that     
 (     ). It thus suffices to find for    the values      

    for some integer   that we will find later. Suppose that           is a 

solution for    (     ), then we have  

     
        (     

 )   (2) 

  

So, the above congruence can be rearranged as            

  
  (      ) . Note that from      

 (     ) , we have     
    (     ) 

which means that     
  is a multiple of  , say    for some integer  . From 

here, we could simply compute    
    

 

 
. We then rewrite this equation as 

           (     
 ) Hence,   factors immediately cancelled out 

from             (     
 ) since it implies that          (     )  Hence, we 

compute   
 

   
 (     ).  

To conclude, we have a solution          for      (      ) . 

Observe that    (      ) is also another solution and we simply can write it 

as      . In addition, if we set       then      
   , thus        

  .  



Now, the following lemma shows that the decryption algorithm will 

output a unique solution as follows. 

Lemma 3.5 Let         . Then the decryption algorithm will output the 

unique  . 

Proof:  Observe that the upper bound for    is                
  

 
. 

Consider        
  with    is an odd integer. Then either    or    is less 

than 
  

 
 that satisfies the upper bound of        . Observe that    is an odd 

integer, then by definition 
  

 
 is not an integer. Since that    and    need to 

be integers, thus        
  

 
 . 

Suppose we consider both    and    are less than 
  

 
, then we should 

have        
  therefore we have a contradiction (i.e the fact that     

    
 ). On the other hand, if we consider both     and    are greater 

than  
  

 
, then we should have        

  yet we reach the same 

contradictory statement. Thus, one of    or    must be less than 
  

 
.  

Suppose     
  

 
 then there must exist a real number    such 

that           
  

 
. On the other site, since we let     

  

 
, then    must be 

greater than 
  

 
. Suppose     

  

 
 then there must exist a real number    such 

that          
  

 
. If we add up these two equations, we should have  

(       )  (      )   
  

 
 
  

 
      (4) 

But since we have        
 , thus (      ) should be equal to zero, 

meaning that      . Finally, we conclude that only one of   or    are less 

than 
  

 
 and will be outputted by the decryption algorithm as the unique  .  

4 Analysis and Discussion      

4.1 Equivalent to Factoring       

Proposition 4.1 Breaking the scheme is reducible to factoring the 

modulus      . 

 



Proof   ( )  Suppose we have an algorithm with the ability to factor the 

modulus       , then we can solve the message    from the ciphertext   

output by the proposed scheme simply by following the outlined decryption 

algorithm. Therefore the proposed scheme is reducible to factoring.  

Proposition 4.2 Factoring the modulus       is reducible to breaking the 

scheme. 

Proof   ( )  Conversely, suppose there exists an algorithm that break the 

proposed scheme; that is able to find the message    from the ciphertext   

then there exists an algorithm to solve the factorization of the modulus   

   . Implying that someone who can decrypt the message    from the 

ciphertext   must also be able to factor       . The factoring algorithm is 

defined as follows. 

Algorithm 4.1: Factoring Algorithm 

INPUT: A ciphertext   and   

OUTPUT: The prime factors      

1. Choose integer        ̅        

2. Compute  ̅    ̅  (     ). 

3. Ask the decryption of ciphertext   ̅. 

4. Receive the output          

5. Compute    ( ̅      )    . 

6. Compute 
 

  
   . 

7. Return The prime factors        

4.2 Coppersmith’s Technique 

Coppersmith [6] introduced a significantly powerful theorem for finding small 

roots of modular polynomial equations using the LLL algorithm. 

Theorem 4.3 [6] Let   be an integer of unknown factorization. Let   ( ) be 

a univariate, a monic polynomial of degree  . Then we can find all solutions    

for the equation   ( )    (     ) with       
 

   in polynomial time. 

Proposition 4.4 Let      (     ) from the ciphertext. If    
  

  then   

can be found in polynomial time. 

 



Proof: Suppose      (     ) . Consider the univariate, monic 

polynomial    ( )   
     (     ) , hence     . Thus, by applying the 

Coppersmith’s method; the root      can be recovered if     
 

   
 

  

 
  

 . Therefore, to avoid this attack, we need to set    
  

    

Theorem 4.5 [2] Let   be an integer of unknown factorization, which has a 

divisor       . Furthermore, let   ( ) be a univariate, a monic polynomial of 

degree  . Then we can find all solutions    for the equation   ( )    (     ) 

with      
 

 
 
  

  in polynomial time. 

Proposition 4.6 Let      (      ) such that    is an unknown factor for  . 

If    
  

  then   can be found in polynomial time. 

Proof: Suppose       (      )  such that     is an unknown factor for   . 

Consider    ( )   
     (      )  with      

 

     . We can find a 

solution      if   
 

 
 
  

   
(
 
 
)
 

   
 

   
  

 .  

4.3 Chosen Ciphertext Attack 

Notice that the factoring algorithm mentioned by Algorithm 3.4 could provide a 

way to launch a chosen ciphertext attack upon the proposed scheme in 

polynomial time, hence resulting in the system totally insecure in this sense. 

Therefore, in order to provide security against this kind of attack, we could 

consider implementing any hybrid technique with symmetric encryption. The 

result from [9] is suitable for our scheme in order to achieve chosen ciphertext 

security, with the cost of a hash function. We may also apply the chosen 

ciphertext secure hybrid encryption transformation that was proposed in [16].  

4.4 Side Channel Attack 

See [21, 31, 4 or 27]. Alternatively, Novak’s attack on CRT [23]. 

5 Conclusion  

Rabin-   cryptosystem is purposely designed without using the Jacobi symbol, 

redundancy in the message and avoiding the demands of extra information for 

finding the correct plaintext. Decryption outputs a unique plaintext without any 



decryption failure. In addition, decryption only requires a single prime. 

Furthermore, the decryption procedure only computes a single modular 

exponentiation instead of two modular exponentiation executed by other Rabin 

variants. As a result, this reduces computational effort during decryption 

process. Some possible attacks such as Coppersmith’s technique, chosen 

ciphertext attack and side channel attack have been analyzed. Still, none can 

successfully affect the proposed strategy. Finally, we show that Rabin-    

cryptosystem is performs better when compared to a number of Rabin 

variants. 

References 

[1] A. Lenstra, and E. R. Verheul, Selecting cryptographic key sizes, Journal 

of cryptology. 14(4) (2001), 255-293.  

[2] A. May, New RSA vulnerabilities using lattice reduction methods, PhD 

diss., University of Paderborn, 2003. 

[3] A. Menezes, C. van Oorschot, and A. Vanstone, Handbook of applied 

cryptography, CRC Press, Washington, 1997. 

[4] D. Brumley, and D. Boneh, Remote timing attacks are practical, Computer 

Networks 48 (2005), 701-716. 

[5] D. Boneh, Simplified OAEP for the RSA and Rabin functions, Advances in 

Cryptology—CRYPTO 2001. Springer Berlin Heidelberg, 2001. 

[6] D. Coppersmith, Small solutions to polynomial equations, and low 

exponent RSA vulnerabilities, Journal of Cryptology. 10(4) (1997), 233-

260.  

[7] D. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev, More 

constructions of lossy and correlation-secure trapdoor functions, Journal 

of cryptology. 26(1) (2013), 39-74. 

[8] D. Galindo, S. Martýn, P. Morillo, and J. Villar, A practical public key 

cryptosystem from Paillier and Rabin schemes, Public Key Cryptography—

PKC 2003. Springer Berlin Heidelberg, 2003.  

[9] D. Hofheinz, and E. Kiltz, Secure hybrid encryption from weakened key 

encapsulation, Advances in Cryptology—CRYPTO 2007. Springer Berlin 

Heidelberg, 2007. 

[10] G. Castagnos, A. Joux, F. Laguillaumie, and P. Nguyen, Factoring     with 

quadratic forms: nice cryptanalyses, Advances in Cryptology—ASIACRYPT 

2009. Springer Berlin Heidelberg, 2009.  

[11] H. C. Williams, A modification of the RSA public-key encryption procedure, 

IEEE Transactions on Information Theory. 26(6) (1980), 726-729. 



[12] K. Kurosawa, and Y. Desmedt A new paradigm of hybrid encryption 

scheme, Advances in Cryptology—Crypto 2004. Springer Berlin 

Heidelberg, 2004. 

[13] K. Kurosawa, T. Ito, and M. Takeuchi, Public key cryptosystem using a 

reciprocal number with the same intractability as factoring a large 

number, Cryptologia. 12(4) (1988), 225-233. 

[14] K. Kurosawa, W. Ogata, T. Matsuo, and S. Makishima, IND-CCA public 

key schemes equivalent to factoring      , Public Key Cryptography—

PKC 2001. Springer Berlin Heidelberg, 2001. 

[15] K. Schmidt-Samoa, A new Rabin-type trapdoor permutation equivalent to 

factoring, Electronic Notes in Theoretical Computer Science. 157(3) 

(2006), 79-94. 

[16] M. Abe, R. Gennaro, and K. Kurosawa, Tag-KEM/DEM: A new framework 

for hybrid encryption, Journal of Cryptology. 21(1) (2008), 97-130. 

[17] M. Bellare, and P. Rogaway, Optimal asymmetric encryption, Advances in 

Cryptology—EUROCRYPT'94. Springer Berlin Heidelberg, 1995. 

[18] M. Elia, M. Piva, and D. Schipani, The Rabin cryptosystem revisited. arXiv 

preprint (2011). Available at arXiv:1108.5935. 

[19] M. Nishioka, H. Satoh, and K. Sakurai, Design and analysis of fast 

provably secure public-key cryptosystems based on a modular 

squaring, Information Security and Cryptology—ICISC 2001. Springer 

Berlin Heidelberg, 2002.  

[20] M. O. Rabin, Digitalized signatures and public-key functions as intractable 

as factorization, Technical Report (1979). 

[21] P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, 

DSS, and other systems, Advances in Cryptology—CRYPTO’96. Springer 

Berlin Heidelberg, 1996. 

[22] P. Paillier, Public-key cryptosystems based on composite degree 

residuosity classes, Advances in cryptology—EUROCRYPT’99. Springer 

Berlin Heidelberg, 1999. 

[23] R. Novak, SPA-based adaptive chosen-ciphertext attack on RSA 

implementation, Public Key Cryptography—PKC2002. Springer Berlin 

Heidelberg, 2002. 

[24] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital 

signatures and public-key cryptosystems, Communications of the 

ACM. 21(2) (1978), 120-126. 

[25] S. D. Galbraith, Mathematics of public key cryptography. Cambridge 

University Press, 2012. 



[26] S. Müller, On the security of Williams based public key encryption 

scheme, Public Key Cryptography—PKC2001. Springer Berlin Heidelberg, 

2001. 

[27] T. Messerges, E. Dabbish and R. Sloan, Power analysis attacks of modular 

exponentiation in smartcards, Cryptographic Hardware and Embedded 

Systems. Springer Berlin Heidelberg, 1999. 

[28] T. Okamoto, and S. Uchiyama, A new public-key cryptosystem as secure 

as factoring, Advances in Cryptology—EUROCRYPT'98. Springer Berlin 

Heidelberg, 1998. 

[29] T. Takagi, Fast RSA-type cryptosystem modulo    , Advances in 

Cryptology—CRYPTO'98. Springer Berlin Heidelberg, 1998. 

[30] W. Diffie, and M. Hellman, New directions in cryptography, IEEE 

Transactions on Information Theory. 22(6) (1976), 644-654. 

[31] W. Schindler, A timing attack against RSA with the Chinese Remainder 

Theorem, Cryptographic Hardware and Embedded Systems—CHES 2000. 

Springer Berlin Heidelberg, 2000. 


